This article is part of a series of practical guides for using the Python data processing library pandas. To see view all the available parts, click here.
Once we have our data in a pandas DataFrame, the basic table structure in pandas, the next step is how do we assess what we have? If you are coming from Excel or R Studio, you are probably used to being able to look at the data any time you want. In python/pandas, we don’t have a spreadsheet to work with, and we don’t even have an equivalent of R Studio (although Jupyter notebooks are a similar concept), but we do have several tools available that can help you get a handle on what your data looks like.
Continue reading